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Abstract. The systematics of the plasmon response in spherical K, Na and Li clusters in a wide size region
(8 ≤ N ≤ 440) is studied. Two simplifying approximations whose validity has been established previously
are considered: (a) a separable approach to the random-phase-approximation, involving an expansion of
the residual interaction into a sum of separable terms, (b) the electron-ion interaction is modeled within
the pseudo-Hamiltonian jellium model (PHJM) including nonlocal effects by means of realistic atomic
pseudoHamiltonians. In cases where nonlocal effects turn out to be negligible, the Structure Averaged
Jellium Model (SAJM) has been used. The leading role of Landau damping in forming the plasmon width
in medium and large clusters is demonstrated. Good agreement with available experimental data is achieved
for K, Na (using the SAJM) and small Li clusters (invoking the PHJM). The trends for peak position and
width are generally well reproduced, even up to details of the Landau fragmentation in several clusters.
Less good agreement, however, is found for large Li clusters. The possible reasons of the discrepancy are
discussed.

PACS. 36.40.Cg Electronic and magnetic properties of clusters – 36.40.Gk Plasma and collective effects
in clusters – 36.40.Vz Optical properties of clusters – 36.40.Wa Charged clusters

1 Introduction

Optical response has been for a long time one of the main
tools to investigate the properties of metal clusters. See
reference [1] for early experiments and references [2,3]
for early theoretical explanations. Remarkable progress
in experimental photoabsorption techniques and contin-
ued studies on the subject have accumulated in the mean-
time, producing an important amount of information cov-
ering the range from small (N ∼ 8) up to medium-heavy
(N ∼ 500) clusters for a variety of materials, see, e.g.,
references [4–10]. The experimental development was, of
course, accompanied by equally intense theoretical stud-
ies at various levels of approaches. Among the studies
involving the detailed microscopic description of the
electronic response one has: time-dependent local-density-
approximation (TDLDA), or equivalently random-phase-
approximation (RPA), with the steep [2,3,11,12] and
soft [13–16] jellium model; TDLDA with the pseudo-
Hamiltonian (or pseudopotential) jellium model (PHJM)
which accounts for nonlocal ionic effects in an spheri-
cally averaged fashion [17–23]; TDLDA with a structure
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averaged jellium model (SAJM) which incorporates vol-
ume averaged local pseudopotentials and structure effects
[24–26]; TDLDA in real time with realistic ionic pseudopo-
tentials [27,28]; fully microscopic RPA with explicit treat-
ment of exchange and correlations [29,30]; shell-model
theory [31]; and even quantum chemical ab-initio calcu-
lations [32]. For recent reviews and a more complete list
of citations see [33–36].

The aim of this paper is a systematic theoretical in-
vestigation of the dipole optical response of three different
types of alkali-metal clusters, namely K, Na and Li. These
three metals are distinguished not only by different values
of their Wigner-Seitz radii (in atomic units rs(K) = 5,
rs(Na) = 3.96, and rs(Li) = 3.25) but also, and more
importantly, by a different influence of the ionic struc-
ture on the cluster’s dynamical properties. Motivated by
the available experimental data, clusters in the size range
8 ≤ Ne ≤ 440 (where Ne is the number of valence elec-
trons) will be considered. Thereby we will pay particular
attention to the evolution of the Landau fragmentation
with cluster size and with varying material, as well as the
general trends of peak energies and widths. A strong mo-
tivation for this survey comes also from the appearance



344 The European Physical Journal D

of new photoabsorption data for small Li clusters [10]
which allow us to further analyze the impact of the ionic-
core structure in these clusters.

As theoretical tools for this survey, we employ TDLDA
calculations, linearized for the case of small oscillations.
This is often also called Random-Phase Approximation
(RPA), a name which we will use from now on. The RPA
calculations are performed on the Kohn-Sham ground
state of the electronic cloud and they employ consistently
the same energy-density functional. Another essential in-
put is the description of the ionic background. We will
model it using the PHJM and the SAJM, where compar-
ison of both allows to deduce the particular ionic effects.
The SAJM includes ionic structure effects in an averaged
manner [24]. It was designed predominantly to compute
properly the systematics of ground state properties in all
sorts of metals, as e.g. cohesive energy, surface tension, or
ground state deformation. The crucial ingredient for the
plasmon response is the use of a pseudopotential-folded
jellium background whose softer surface places the plas-
mon position quite correctly [25] (we ought to mention,
however, that this effect of a soft jellium surface was ad-
vocated earlier in [38]). The SAJM provides fairly accurate
plasmon properties for K and Na clusters, as will be shown
in Section 3. More elaborate is the PHJM which consists
essentially in the spherical average of a realistic atomic
pseudo-Hamiltonian [37], designed to take into account
nonlocal effects of core electrons on valence electrons in
the isolated atom. This average produces a global cluster
pseudo-Hamiltonian with a similar structure of the atomic
one and thus retains its nonlocal features. In particular, a
radial-dependent effective mass and angular-momentum-
dependent potential for each Kohn-Sham orbital are ob-
tained. The model is then also capable of describing Li
clusters where nonlocal effects become crucial.

In fact, both SAJM and PHJM are closely related. The
SAJM can be derived from ionic structure models if local
pseudopotentials are employed, and the PHJM follows a
similar strategy but is more general in that it allows also
for nonlocal pseudopotentials. Thus comparing SAJM and
PHJM we easily judge on the possibility of a purely local
treatment in contrast to the need for nonlocal models.
Obviously, in modeling the PHJM an essential input is
the parameterization of the atomic pseudo-Hamiltonian.
We use in the present paper a new parameterization of
the Li pseudo-Hamiltonian as recently proposed in [22].
In the bulk limit for lithium, the associated PHJM effec-
tive electron mass (see the definition in Eq. (34) of [18])
becomes m∗e/me ∼ 1.2, which is considerably less than
the value m∗e/me ∼ 1.5 of PHJM calculations based on
a previous parameterization [17]. The new value is more
realistic, since it reproduces the result of more elaborated
pseudopotentials (see Tab. 1 of [23]). It is interesting to
look at the consequences of this new parameterization on
the plasmon peak position in Li clusters.

The RPA treatment is much simplified when invok-
ing an expansion of the residual interaction into a sum of
separable terms, leading to a “separable RPA” (SRPA).
It was shown earlier that such an expansion converges

quickly (within 4−12 terms depending on system size and
method) and yields an extremely efficient method to avoid
solving the full RPA yet achieving full RPA accuracy
[14–16]. The SRPA is thus an ideal tool for large scale
systematic investigations covering deformed [15] or large
spherical clusters [14,16]. As it cooperates equally well
with SAJM or PHJM, we will employ it also for the
present case after a quick test of its applicability for our
purposes.

2 Technical details

2.1 Handling the separable RPA

The SRPA [14,15] used in the present paper combines as-
pects of the vibrating potential model (or schematic model
of RPA) [39–42] and the local RPA [13,25,34] expand-
ing the residual interaction as a sum of separable terms.
Due to the separable ansatz, the expensive RPA eigen-
value problem turns into a much simpler dispersion re-
lation which is extremely helpful (if not compulsory) for
systematic investigations of deformed and/or very large
clusters. The force coefficients in the separable expan-
sion are derived systematically and unambiguously from
the given residual interaction. The RPA residual interac-
tion is derived by second functional variation of the same
energy-density functional that was used to compute the
Kohn-Sham ground state. In practice, we are using here
the energy-density functional of [43] for exchange and cor-
relations.

There is some freedom in the choice of a basis set of
input local operators. A good choice should embrace op-
erators which couple to the surface plasmon, those which
attach to the volume plasmon, and several more which ac-
count for polarization effects from higher states. A most
efficient (i.e., well converging) choice for the basis set of
local operators in the expansion can be taken over from ex-
perience gained in the local RPA [25]. Similarly to [16], the
set of 10 local L = 1 operators fp(r) = (r/R)pY10(Θ) with
p = 1, 3, 5, 7, and fq(r) = j1((qπ/R)r)Y10(Θ) with q =2.0,
2.8, 3.6, 4.4, 5.2 and 6.0 is used. Here, j1((qπ/R)r) is the
spherical Bessel function, Y10(Θ) is the dipole spherical

harmonic, R = rsN
1/3
a is the jellium radius, and Na is the

number of atoms in a cluster. The radial parts of these
basis operators (weighted with the ground state density)
are peaked at different values of r, thus covering the sur-
face as well as many slices of the interior of a cluster. This
indicates how such a basis can embrace the coupling to
the surface plasmon together with volume plasmon and
further interior excitations. What remains is to check the
convergence of the series when proceeding to new applica-
tions (new range of sizes, new materials, new potentials).
Further details can be found in [14–16] whereby it is to
be noted that these both presentations differ in details
of the separable ansatz and in the actual handling of the
dispersion relation. Here we recur to the version of [14,15]
employing explicit particle-hole states from the underlying
Kohn-Sham ground state. The above local operators are
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used to derive self-consistently the operators of the resid-
ual interaction and these are used in the separable expan-
sion (this differs from [16] where the expansion is done
directly in terms of input local operators). The present
scheme yields sufficient convergence with about four sepa-
rable terms up to the largest clusters in the present inves-
tigation (Ne = 440) and for the chosen resolution (width).
The enormous gain in efficiency can be easily read-off from
the technical complexity: with SRPA we handle dispersion
relations with matrices typically of rank 4 whereas a full
RPA treatment of a cluster with Ne = 440 would invoke
a diagonalization of 1000× 1000 matrices.

2.2 Observables and their presentation

The SRPA in the present form leads to a spectrum of
eigenstates with frequencies ωj and associatedB(E1)j val-
ues, i.e., reduced probability of E1 transition from the
ground state to the excited RPA state with the num-
ber j. All details of a calculation are visualized when
plotting the discrete spectral states with their normal-
ized oscillator strength S(E1, ωj) = ωjB(E1)j/m1 where
m1 =

∑
j ωjB(E1)j is the energy-weighted sum rule. This

presentation shows in detail the amount of Landau frag-
mentation of the collective dipole strength over the neigh-
boring dipole 1ph (particle-hole) states. Note that we use
here frequencies ωj synonymous with excitation energy
and provide it in units of eV, which means that we im-
plicitly use units with ~ = 1.

Within PHJM the energy-weighted sum rule m1 is
modified with respect to the standard Thomas-Reiche-
Kuhn expression by an amount which indicates the im-
portance of nonlocal ionic effects. For sodium and potas-
sium clusters these are negligible and only for Li one has a
sizeable modification [17,18]. In the calculations presented
below the RPA particle-hole basis was chosen large enough
such that the sum rule is exhausted for all cases with an
accuracy of 1–2%. Unfortunately, a detailed comparison
of this sum rule with the experiment is not feasible at
present because of the large uncertainties in the absolute
measured cross-sections.

Actual experimental strength distributions look much
smoother due to finite spectral resolution and, more im-
portantly, due to thermal broadening of the resonance
peaks (for a quantitative discussion see, e.g., [47]). For
comparison with data, we smoothed each (δ-like) distribu-
tion by a Lorentz function which yields a dipole strength
distribution as SE1(ω) =

∑
j S(E1, ωj)ρ(ω − ωj) with

ρ(ω − ωj) = (2π)−1 ∆

(ω − ωj)2 + (∆/2)2
. The value of the

averaging parameter is ∆ = 0.25 eV which is tuned to
roughly simulate the typical thermal broadening of the
plasmon. The actual widths would, of course, vary with
temperature and material. Since we do not aim at a de-
tailed description of widths, we use here one average value
to simplify matters. As will be seen in Figure 4, this aver-
age value provides appropriate results in all cases consid-
ered here.

Although Landau fragmentation leads to many details
in the spectra, the main trends can well be characterized in
terms of peak position and width. We deduce both prop-
erties from the smoothed strength distributions. The peak
position is defined as the centroid energy analyzed in an
interval which is centered at the peak and has a width of
1 eV. It needs to be determined in an iteration procedure.
The corresponding width Γ is estimated within the fol-
lowing prescription [16]: the highest peak was picked and
the farest occurrences of half the peak-height are deter-
mined above and below the peak. The width is then the
energy difference of these two half-height points. This, as a
rule, embraces the whole bump of the structured plasmon
strength and, in the simplest case of a one-peak struc-
ture, reduces to a familiar full width at half maximum
(FWHM). Finally, as a complementing global feature of
the excitation spectrum, we evaluate the static dipole po-
larizability α which is related to inverse-energy-weighted
sum rule: α = 2m−1 = 2

∑
j ω
−1
j B(E1)j .

3 Results and discussion

3.1 Convergence of the SRPA expansion

The convergence of the SRPA results with the number of
separable terms is demonstrated in Figure 1. As pointed
out earlier [14–16], it is obvious that one separable term
(the strictly separable RPA) is insufficient by far. The
strength is too much blue shifted. But the results im-
prove dramatically with each additional term in the ex-
pansion, such that good convergence is achieved with al-
ready four operators (with the radial dependence (r/R)p

and p = 1, 3, 5, 7) leading, in fact, to the same result as in
the case of 10 local operators. It is only the largest cluster
in the sample, Na+

441, for which one can spot tiny differ-
ences to the exact results (reached here certainly when
using 10 separable terms [16]). This hints also that more
terms may become necessary when stepping up to even
larger clusters. It is also to be noted that a higher num-
ber of terms becomes necessary when aiming at a higher
spectral resolution, see the tiny differences in the fully
spectral presentation (up versus down bars in the two up-
per panels of Fig. 1). As a sideremark, the present SRPA
technique achieves convergence for Na+

441 with four terms
where the method of [16] would have required six terms
for the same precision. The two methods differ in the way
they employ the local operators in the separable ansatz.
In [16] the residual interaction is parametrized directly in
terms of these operators. In the method [14,15] which is
exploited here the local operators are used as generators of
the separable terms in the framework of the vibrating po-
tential model [40,42]. This pre-processing leads naturally
to a somewhat faster convergence.

Altogether, Figure 1 compares SRPA and full RPA
(obtained without the separable approximation) results
for Na+

21 and Na+
59. The comparison proves again what

had been shown extensively in previous works [14–16],
namely that the separable expansion for Coulomb systems
converges very well with respect to spectral properties in
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Fig. 1. The oscillator strength calculated in the framework of
the SRPA (up) and full RPA (down) shown as bars (the lat-
ter is done for Na+

21 and Na+
59 only). The full line represents a

smoothed strength distribution as averaged by a Lorentz func-
tion of width 0.25 eV. The length of the bars is rescaled by a
factor 1/2.55 to fit the scale to the smoothed strength. The
SRPA results are presented for several numbers of separable
terms: dashed = 1, dash-dotted = 4, solid line = 10. The in-
sert for Na+

441 demonstrates the high density of RPA states
covered by the dipole plasmon.

general, and the dipole strength functions in particular.
The actual number of separable terms needed is so small
that SRPA delivers an extremely efficient scheme.

3.2 SAJM versus PHJM

Figure 2 compares dipole strengths calculated with SRPA
using SAJM and PHJM for the ionic background. The
cases K+

21, K+
59, and Li+21 are chosen as typical examples.

The first two represent clusters with very weak nonlocal
effects (m∗e/me = 1.02 ≈ 1), and with Landau fragmenta-
tion increasing with cluster size. The last example, Li+21,
represents a cluster with strong nonlocal effects. One sees
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Fig. 2. The oscillator strength calculated in the framework
of the SRPA with the SAJM (up) and PHJM (down) single-
particle schemes. For Li+21 the photoabsorption experimental
data (4) in Å2/Ne [10] are compared. The results are shown
in the same fashion as in Figure 1.

that for K+
21 and K+

59 both calculations, the SAJM+SRPA
as well as the PHJM+SRPA, give almost identical results,
especially for the smoothed dipole strength. This is not
surprising since the nonlocal effects, which constitute the
principle difference between the SAJM and PHJM, are
not so large in potassium. We have checked similar re-
sults for Na clusters and find the same agreement between
SAJM+SRPA and PHJM+SRPA as for K clusters. Non-
local effects are thus negligible for computing the plasmon
response in Na or K and the SAJM is quite sufficient for
this purpose. In a similar fashion, one finds that a more
detailed (not averaged) treatment of the ionic background
in Na and K clusters can also be simplified by invoking
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merely local pseudopotentials, as done e.g. in the cylindri-
cally averaged pseudopotential scheme [54]. This positive
experience has inspired further work to achieve a better
fine-tuning of local pseudopotentials for simple metals, see
[55] and references cited therein.

The lowest panel in Figure 2 shows the results for Li+21.
Here we see large discrepancies between SAJM+SRPA
and PHJM+SRPA. The PHJM+SRPA predicts a plas-
mon energy very close to the experimental data [10] while
the SAJM+SRPA considerably overestimates the peak
frequency of the plasmon resonance. This proves clearly
the importance of nonlocal effects which are taken into
account in the PHJM+SRPA.

3.3 Strength distributions

Figure 3 shows the dipole strength distributions for a
broad selection of spherical, singly charged K, Na, and
Li clusters. The results are compared with experimental
data [6–10]. It is worth noting that these experimental
data have been obtained at different temperatures: 350 K
for K+

9 and K+
21 [6]; 600-800 K for K+

441, Li+139 and Li+441 [8];
560, 340, 310, 295 and 290 K for Na+

9 , Na+
21, Na+

41, Na+
59

and Na+
93, respectively [9]; 105 K for Li+9 and Li+21 [10].

An increase of the temperature causes a cluster dilatation
and a corresponding redshift of the plasmon (see, for in-
stance, [46,47]), which can be estimated as about 1% of
the plasmon energy per 100 K [7,48]. We have employed
the Wigner-Seitz radii at room temperature. The temper-
ature effect on the plasmon position can thus reach 5% in
the worst case, but stays generally below 2%. Moreover,
the bulk melting temperature is Tb = 336, 371 and 452 K
for K, Na and Li, respectively. So, one may assume that
at least clusters K+

441, Li+139 and Li+441 have been measured
in a liquid-like phase.

It worth noting that both the SAJM and PHJM,
though taking into account some core electron effects, are,
nevertheless, based on the jellium approximation. So we do
not pretend to describe the photoabsorption experimental
data in the cases where the detailed arrangement of ions
is particularly essential (for example, the fragmentation of
the dipole strength in Na+

9 observed at low temperature,
105 K [49]) and, to be consistent, will compare our re-
sults mainly with high-temperature photoabsorption data
where available (see Refs. above). The single exception
will be the case of small Li clusters where we recur to low-
temperature experimental data because we could not find
any other measurements of the dipole response for these
clusters at higher temperatures.

The computed strength distributions in Figure 3 agree
generally well with the experimental data for Na and K
clusters, and for the small Li clusters. They reproduce
even some details as the shoulder above the plasmon peak
in case of Na+

21, Na+
59 and Li+21. In Na clusters the most

noticeable deviation from the experiment takes place in
Na+

41 where we got the double-peak plasmon instead of
one-peak profile observed experimentally. The SAJM cal-
culations predict for this cluster the octupole deformation
in the ground state [50] while in the present paper Na+

41 is

supposed to be spherical. Most probably, this is the main
reason of the discrepancy. The other deviations from the
experiment are of minor character: the calculated plasmon
energies are slightly redshifted by 0.1–0.15 eV in K+

9 , K+
21

and Na+
21 and blueshifted by about the same value in K+

441.
The deviation for K+

441 could be partially attributed to
(a) the high temperature of 600–800 K in the experiments
which would favor a redshift and (b) core-polarization ef-
fects which are small but can cause a few percent redshift
in large clusters. Generally, good agreement of the calcula-
tions with the experimental data for such a wide group of
clusters shows that the SAJM+SRPA and PHJM+SRPA
provide quite reliable models.

While small lithium clusters are well-described, there
are substantial deviations for the large lithium clusters
Li+139 and Li+441, where the PHJM+SRPA calculations
yield a blue-shift by ≈ 0.5 eV as compared with the exper-
imental plasmon frequency. Besides, for Li+441 the width
is greatly underestimated. These results are similar to
those found in reference [18] when using the full pseu-
dopotentials (see Fig. 6 of that reference), and thus con-
firm that the accuracy of the present pseudo-Hamiltonian
parameterization is similar to that of the full pseudopo-
tential. Additionally, this shows again that the good agree-
ment with the experiment for large Li clusters obtained in
the first PHJM calculations of reference [17] was rather
spurious and due to an incorrect parameterization of
the atomic pseudo-Hamiltonian. This sensitivity of the
pseudo-Hamiltonian parameterization is more important
the bigger the cluster (in big clusters the contribution of
the kinetic energy to the restoring force and, therefore, the
influence of the effective mass is more essential) and yields
substantial differences in the bulk limit [23]. In small Li
clusters the results are much more stable. In fact, as is
seen in Figure 3, the new parameterization gives a strik-
ing agreement with the experiments for Li+9 and Li+21.

The failure of the PHJM+SRPA in large Li clusters
could be attributed to different effects which are not in-
cluded in this model. We mention the following as impor-
tant sources of discrepancy:

a) large temperatures in the photoabsorption experi-
ments for big Li clusters which would induce a redshift
in the energy and increase the width;

b) effects of the cluster ionic array on the electronic
properties, similarly to the band structure in bulk Li
[51,52], which are washed out by the spatial average of
PHJM. However, the photoabsorption measurements
for large clusters have been performed at a high tem-
perature, 600–800 K, and so these clusters were in the
liquid-like phase, which could suppress band structure
effects;

c) the present PH parameterization [22], although an im-
provement compared to the previous one [37], is per-
haps still insufficient to describe correctly the dynam-
ics of valence electrons in large Li clusters. We remind
that the PH parameterizations [22,37] were tuned to
reproduce static properties. At the same time, elec-
tronic dynamics is also sensitive to details of pseudopo-
tentials and corresponding pseudo-Hamiltonians;
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Fig. 3. The SRPA oscillator strength compared with the photoabsorption data (4) in Å2/Ne for K, Na and Li clusters (K+
9 ,

K+
21 [6], K+

441, Li+139, Li+441 [8], Na+
9 −Na+

93 [9] and Li+9 , Li+21 [10]). The K and Na clusters use the SAJM background whereas
Li employs the PHJM. The dotted line for Li+21, Li+59 and Li+139 represents the PHJM+SRPA results obtained with the PH
parameterization from reference [37]. The results are given in the same fashion as in Figure 1. The experimental data for K are
decreased by the factor 2 to provide an appropriate scale.

d) a direct contribution of dynamical core-polarization ef-
fects to the dielectric response. In the present model,
we treat properly the static contribution while the dy-
namical one is incorporated only through the effective
mass, which could be insufficient for Li clusters. It was
shown recently for the case of Ag clusters that dynami-
cal core polarization can be treated explicitly and that
it plays a crucial role for the dielectric response, lead-
ing to a considerable decrease of the plasmon frequency
[44]. In general, it was found that the stronger the non-

local contribution of the ionic core polarization and the
bigger the cluster, the larger the redshift of the plas-
mon frequency. A similar readshift may be expected
for large Li clusters because these, unlike K and Na,
exhibit strong nonlocal ion-core effects already in the
ground state [17,18,20–22].

In any case, large Li clusters need further careful fine-
tuning of nolocality properties and ionic background mod-
els in order to achieve the good agreement seen for Na and
K clusters.
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widths (right) versus N
−1/3
e . For the fre-

quencies we show energy centroids (boxes)
as well as positions of highest peaks (cir-
cles). The SRPA results are compared with
experimental data (triangles) [6–10].

3.4 Trends

Figure 4 shows the trends with N
−1/3
e for the plasmon

frequencies ω and widths Γ which were extracted from
the strength distributions as explained at the end of Sec-
tion 2.2. We had seen in Figure 3 that the strengths in
many clusters have a rather structured form which is not
easily characterized by one peak position. Therefore, we
provide in Figure 4 also the frequencies of highest peaks.
The difference between plasmon and highest peak frequen-
cies allows to estimate the uncertainty in a peak assign-
ment caused by the fragmentation pattern.

All trends from the SRPA calculations in Figure 4 look
quite similar for K, Na, and Li clusters. The frequencies
decrease from a bulk limit (close to the Mie value) and

for decreasing size as N
−1/3
e . However, at Ne ≈ 50 this

trend levels off or even turns into a slight increase. The
linear decrease is due to the spill-out of the electron cloud
[34]. The spill-out is a surface effect and remains about
independent of system size (for not too small clusters), but
the ratio of surface to volume increases with decreasing
size which then explains the observed trend. For small
clusters, however, the quantization of the 1ph states comes
up as a process which limits the resonance position from
below thereby stopping the linearly decreasing trend.

The widths show also similar trends for K, Na and
Li clusters. For small clusters, there is a vacuum of 1ph
states at resonance frequency which leads to very narrow
peaks, representing here basically the imposed background
width. Landau fragmentation sets on for Ne & 40 where
we see a strong increase in width. It is interesting to note
that this increase in width is accompanied by an increas-
ing difference between the two definitions of a peak (see
left panel of Fig. 4). For very large clusters, one expects
again a decrease [16,41]. This trend, however, becomes
manifest only for cluster sizes Ne > 1000 and requires in-

vestigations which go up to much larger sizes, as e.g. in
[16,21]. It is worth mentioning that the observed widths
come in any case predominantly from Landau fragmenta-
tion. Large clusters show a sizeable fragmentation in spite
of the spherical shape, whereas small clusters require ther-
mal averages in ensembles containing octupole deformed
clusters for which Landau damping is activated by sym-
metry breaking [47].

Comparing with the experimental data in Figure 4, we
see that the trends of widths and frequencies with the ma-
terial are essentially reproduced. The calculations confirm
the general increase of the plasmon width from K to Li,
discussed in many papers. This increase in our calcula-
tions is not so strong as in experiment [8] and in some
RPA calculations (see Fig. 16 for K440, Na440 and Li440 in
[35]). The difference with reference [35] can be partly ex-
plained by the fact that we use here more realistic single-
particle schemes where the decrease of the width of the
single-particle potential from K to Li is partly compen-
sated by the increase of the potential depth (in Ref. [35] a
square potential well with three different potential widths,
2rsN

1/3, was exploited). The discrepancy with experimen-
tal trends is mainly caused by the too small calculated
width in Li+441 (see above the discussion for large Li clus-

ters). Looking at the trends with N
−1/3
e for fixed mate-

rial, we see that they come out best for Na clusters. For K
clusters the agreement is also good. However, the supply
of measured clusters is too small for a detailed compar-
ison, specially in region of medium sizes. The case of Li
is worse. As already seen in Figure 3 and extensively dis-
cussed above, the calculations for large Li clusters produce
too high peak frequencies and too low widths.

As complementing information, we show in Figure 5
the static dipole polarizabilities α calculated within the
SRPA. They demonstrate an expected general decrease
with size, based on the decreasing importance of the
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Fig. 5. SRPA results for the static dipole polarizabilities α (in

units of αcl = r3
sNa) versus N

−1/3
e (see text).

electronic spill-out. The kink at Na+
41−Na+

59 is connected
with the corresponding kink in plasmon energies discussed
above. The normalized values α/αcl in Li clusters are con-
siderably larger than in K and Na due to larger spill-out in
Li clusters which, in turn, is caused by the large non-local
effects.

3.5 Details of the Landau fragmentation

We have seen in the detailed Figure 3 and in the trends
in Figure 4 that the Landau damping for spherical clus-
ters changes dramatically from small clusters, Ne . 20,
to larger clusters, Ne & 40. This feature is related to shell
structure, as has been discussed earlier [12,25]. The sur-
face plasmon resonance lies in a “vacuum” of 1ph states

for small clusters. But the 1ph energies shrink ∝ N
−1/3
e

and interfere necessarily with the resonance at some point,
which comes typically around Ne ∼ 40. From that point
on, one has always a large level density near the resonance
which leads to a substantial Landau damping. The level
density increases with size and so increases the width. But
a further mechanism comes into play for even larger clus-
ters: the coupling between the resonance and 1ph states
fades away due to increasing mismatch of momenta. This

leads to a decrease of the plasmon width ∝ N
−1/3
e , esti-

mated analytically in the wall formula [41] and tested in
extensive SRPA calculation [16].

The interplay between plasmon position and dipole
1ph states (i.e. states taking place without the residual
interaction) for the present samples is visualized in Fig-
ure 6. Here we have distinguished the 1ph dipole tran-
sitions according to their shell spacing ∆N = 1, 3, 5, ...,
where N = 2(n − 1) + l is the principle shell quantum
number with n and l being the number of the nodes
and orbital momentum of the single-particle wave func-
tion. These 1ph configurations represent the unperturbed
dipole states which constitute the excitation spectrum if
the residual interaction is neglected. One sees in Figure 6
that the spectra are bunched in groups of ∆N , with well-
separated gaps for small clusters and small ∆N and with
a tendency to overlap for larger systems or larger ∆N .
The gaps are better separated for small clusters since the
single-particle potential there comes close to a harmonic

oscillator shape. In larger clusters, on the other hand,
the single-particle potential resembles more a square well
which produces less bunching of the single particle states.
The corresponding decrease of shell gaps with increasing
the size is a common feature of saturating Fermion sys-
tems, i.e. systems which approach a constant density, see,
e.g., reference [56].

The dipole plasmon is mainly generated by the ∆N =
1 configurations first placed at 0.5–1.5 eV. Due to the
residual interaction, the ∆N = 1 oscillator strength is
mixed and blueshifted to form the plasmon at the appro-
priate energy which is indicated by arrows in Figure 6.
The shift increases strongly with system size due to the
long range of the Coulomb forces such that the emerging
plasmon position changes very little with electron number
(this is different, e.g., from the case of the nuclear giant
resonances generated from a short-range interaction, see
[25]). The large shift now places the plasmon far away from
the original ∆N = 1 shell. In small clusters the plasmon
lies in the wide gap between ∆N = 1 and 3 and remains
unperturbed as a clean collective peak. This is ideally re-
alized in the cases Ne = 8. The Ne = 20 in Figure 6
represents already a limiting stage where the resonance
approaches the next bunch of the ∆N = 3 states. It does
this in similar fashion for all three materials. This leads
to the onset of fragmentation for this cluster sizes, as ob-
served in Figure 3. The medium size clusters (the case
Ne = 58 in Fig. 6) find the plasmon already fully interfer-
ing with the ∆N = 3 bunch which corresponds nicely to
the sizeable Landau fragmentation seen in Figures 3 and
4. The plasmon runs deeper into a swamp of 1ph states
for larger clusters, as nicely seen for the case Ne = 440
in Figure 6. This leads to the general trend of increasing
width which is, however, overlaid by strong fluctuations.
These fluctuations are related to the fluctuations in level
density at resonance position which can also be read off
from Figure 6. For very large clusters with Ne > 1000
the level density is so smooth that fluctuations shrink and
the resonance develops into one broad unstructured peak
[16]. This is, on the other hand, the point where the width
starts to shrink with a size (as reviewed above). We want
to remark that these general trends are the same for the
materials shown in Figure 6. They are, in fact, valid for
all simple metals.

4 Summary

Systematic investigations of the dipole plasmon for K,
Na and Li clusters have been performed in a wide range
of sizes for which experimental results are available. The
ionic structure was treated within the pseudo-Hamiltonian
jellium model (PHJM), that takes into account possible
nonlocal effects on the valence electrons. These are spe-
cially important in Li. For the Na and K cases, where
nonlocal effects are negligible, we have explicitly shown
that the PHJM is equivalent to the structure-averaged
jellium model (SAJM) and have used this for the system-
atic calculations. The dipole optical response was calcu-
lated within the separable random-phase-approximation
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Fig. 6. Histograms showing, as a function of the energy, the number of dipole particle-hole configurations corresponding to
∆N = 1 (light dotted bricks), ∆N = 3 (dashed bricks), ∆N = 5 (dark dotted bricks) and ∆N ≥ 7 (unfilled bricks) dipole
transitions in small, medium and large K, Na and Li clusters. N is the principal shell quantum number. The arrows mark
centroid energies of the plasmon. Note the different scales used for small, medium and large clusters.

(SRPA), which is actually an RPA using a separable ex-
pansion for the residual interaction. The separable expan-
sion of the SRPA converges rapidly such that a sum of
four separable terms was sufficient for the clusters stud-
ied here. This rapid convergence reduces drastically the
computational effort, yielding at the same time the full
accuracy of RPA methods.

The results from SAJM+SRPA and PHJM+SRPA are
in good agreement with most of the available experimen-
tal data. The SAJM+SRPA (relying on folding with local
pseudopotentials) turned out to be sufficient for K and Na
clusters whereas the nonlocal effects incorporated in the
PHJM+SRPA are required to describe properly Li clus-
ters. The calculations reproduce the correct trends of the
plasmon frequencies and widths with cluster size. These
trends with size are very similar for K, Na, and Li clusters.

The trends with changing material, namely an increase in
plasmon frequency and width from K over Na to Li, are
also reproduced by the calculations. The leading role of
the Landau damping for the plasmon width in medium
and large clusters was analyzed in detail, showing also
that a substantial fine structure remains in the spectra of
medium sized clusters.

In spite of the general success of the models, we ought
to point out that still a large discrepancy remains for the
large Li clusters Li+139 and Li+441: the calculations overesti-
mate the plasmon frequency and underestimate the width.
There are several conceivable reasons for that defect (ther-
mal expansion, missing band structure, insufficiencies in
the pseudopotential, dynamical core-polarization) which
yet need to be checked in detail.
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